

GTM: Using GTM-IP in Electric Vehicles

ME-IC/PRM-IP | March 15th, 2024

Using GTM-IP in Electric Vehicles Agenda

- 1. PWM and PCM generation
- 2. PWM type overview

2

- 3. High resolution PWM support
- 4. Special cases of PWM generation
- 5. Multi channel synchronous PWM
- 6. Modify PWM with deadtime using DTM
- 7. Fast shut off functionality using DTM

PWM and PCM generation

Using GTM-IP in Electric Vehicles PWM generation with GTM

- Functionality
 - Single pulse with the length of duty cycle
 - After the end of the period, the pulse will be repeated
 - Waveform depends on period, duty cycle and polarity
- Applicable modules
 - TOM; ATOM; TIO
- Implementation example
 - Generate a PWM via configuring the period and duty cycle of the PWM
 - Generate a PWM via setting the position of the first edge and second edge of the PWM

ME-IC/PRM-IP | 2024-03-15

Two PWMs with different duty cycle and polarity

Using GTM-IP in Electric Vehicles PCM as alternative to PWM

- Functionality
 - High pulses will be evenly spread in period time frame
 - Duty cycle is equal to the integration of high pulses
- Applicable modules
 - TOM channel 15; ATOM channels 1,3,5,7
- Implementation example
 - ATOM_CH1: Generate a PCM as alternative to PWM
 - ATOM_CH2: Generate a standard PWM

PWM and PCM with different duty cycles

5 ME-IC/PRM-IP | 2024-03-15

PWM type overview

Using GTM-IP in Electric Vehicles Edge-Aligned PWM

- Description
 - Generate left and right aligned PWMs
 - LEFT: The rising edge of the PWM is aligned to start of the period
 - RIGHT: The falling edge of the PWM is aligned to end of the period
- Applicable modules
 - TOM; ATOM; TIO
- Implementation example
 - Switch the PWM type by setting the PWM type parameter to LEFT/RIGHT

ME-IC/PRM-IP | 2024-03-15

Using GTM-IP in Electric Vehicles **Center-Aligned PWM**

- Description
 - The rising and falling edges of the PWM have the same distance to the center of the period
- Applicable modules
 - TOM, ATOM, TIO
- Implementation example
 - Set the PWM type parameter to CENTER
 - Change of polarity

.CN0:SOMP_UP

.ATOM0_OUT(1)

Polarity = 0;

ME-IC/PRM-IP | 2024-03-15 8

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Polarity = 1;

Using GTM-IP in Electric Vehicles Shifted PWM within period border

TOM ATOM TIO

Description

9

- By shifting left or right, the PWM waveform can be modified
- Applicable modules
 - TOM; ATOM; TIO
- Implementation example
 - Right shift: ATOM_OUT(0) for standard PWM, ATOM_OUT(1) for shifted PWM
 - Left shift: ATOM_OUT(1) for standard PWM, ATOM_OUT(2) for shifted PWM

High resolution PWM support

Using GTM-IP in Electric Vehicles High resolution

TOM ATOM

- Description
 - Factor 32 higher resolution for the PWM generation
 - Generate more accurate frequencies depending on the cluster clock
 - Perfect for situations that require precise control over voltage or current, such as chargers
- Applicable modules
 - TOM; ATOM
- Implementation example
 - ATOM operates on 200 MHz cluster clock -> 5 ns resolution for each counter tick
 - One edge with a resolution of 0.156 ns in 32 Steps(n=5 bit) -> 5 ns/32= 0.156 ns
 - Generate a high resolution PWM by scaling the duty cycle/period parameter by 32

11 ME-IC/PRM-IP | 2024-03-15

Using GTM-IP in Electric Vehicles **High resolution**

- Implementation example
 - ATOM operates on 200 MHz cluster clock -> 5 ns resolution for each counter tick
 - One edge with a resolution of 0.156 ns in 32 Steps(n=5 bit) -> 5ns/32= 0.156 ns _
 - Generate a high resolution PWM by scaling the duty cycle/period parameter by 32 —

TechDav TIO TOM ATO

BOSCH

Special cases of PWM generation

Using GTM-IP in Electric Vehicles PWM generation with 100% and 0% duty cycle

- Description
 - PWM remains at a constant signal level for the entire duration of the period
- Applicable modules
 - TOM; ATOM; TIO
- Implementation example
 - Generate a PWM signal with a duty cycle of 100% or 0%, and switch between them

Multi channel synchronous PWM

IP TechDay We enable possibilities

- Use-Case/Benefits
 - For many applications e.g. electric motor control many PWM outputs must be synchronized
 - The GTM is able to synchronize up to 16 PWMs within one module
 - The GTM is able to synchronize up to 36 PWMs within one cluster

- Used functionalities
 - Synchronize individual TOM/ATOM/TIO channels within one module based on external or internal events
 - Synchronize TOM/ATOM/TIO modules within one cluster
 - Synchronize TOM/ATOM/TIO modules across different clusters
- Applicable modules
 - TOM; ATOM; TIO

BOSCH

- Implementation example
 - 1. Synchronize 7 PWMs within one module
 - PWM types = Left; Right; Center
 - Used module and channels: ATOM Cluster 0 Channel 1, 2, 3, 4, 5, 6, 7

Synchronized update of the

ME-IC/PRM-IP | 2024-03-15 18

- Implementation example
 - 2. Synchronize 14 PWMs across different clusters
 - PWM_types = Center
 - Used module and channels: ATOM Cluster 0 Channel 1, 2, 3, 4, 5, 6, 7 and ATOM Cluster 1 Channel 1, 2, 3, 4, 5, 6, 7

Modify PWM with deadtime using DTM

Using GTM-IP in Electric Vehicles Modify PWM with deadtime using DTM

IP TechDay We enable possibilities

- Use-Case/Benefits
 - Delay edges:
 - Lengthen/ shorthen/ mask pulses
 - Use deadtime to avoid short-circuit currents
 - E.g. in H-bridges for power converters or motor controllers
- Used functionalities of the DTM
 - The DTM is able to invert and apply deadtime or delay edges to the PWM signals coming from TOM, ATOM or TIO
- Applicable modules
 - DTM

Using GTM-IP in Electric Vehicles Modify PWM with deadtime using DTM

- Description
 - Used outputs
 - − DTM_OUT0 \rightarrow Same polarity as provided signal from TOM/ATOM/TIO
 - − DTM_OUT1 → Inverted polarity to provided signal from TOM/ATOM/TIO

Combined delay of rising edge of DTM_OUT0 and rising edge of DTM_OUT1

Fast shut off functionality using DTM

Using GTM-IP in Electric Vehicles Fast shut off functionality using DTM

IP TechDay We enable possibilities

- Use-Case/Benefits
 - Set the DTM outputs to a defined level based on a selected event
 - Ensure that the outputs can switch in a safe state immediately
 - In case of emergency situations
 - In case of detected error in the application
- Used functionalities of DTM
 - DTM is able to set DTM outputs to defined level triggered by a defined input
- Applicable modules
 - DTM

Using GTM-IP in Electric Vehicles Fast shut off functionality using DTM

IP TechDay We enable possibilitie

- Implementation example
 - Synchronized shutoff of 3 DTM channels without deadtime

ATOMO_CHI.CNO
 <

When "individual shutoff enable" is set to 1 by software or trigger events, DTM outputs of 3 DTM channels are set to a defined level synchronously

Summary

Using GTM-IP in Electric Vehicles Summary

- GTM usage in Electric Vehicles
 - GTM provides many functionalities for multiple use cases e.g.:
 - Power converter
 - Electric motor control
 - GTM provides the option to combine many functionalities for multiple use cases e.g.:
 - PWM with High Resolution PWM Support
 - PWM with deadtime
 - PWM with deadtime and High Resolution PWM Support
 - Multi channel synchronous PWM with deadtime and High Resolution PWM Support
 - \rightarrow The end user can decide which functionalities and combinations of functionalities are needed for the individual use cases
 - → Example driver based on Coside can be used as helping guideline how to use GTM functionalities to set up applications more easy

ATOM DIM ADC Trigger Vin 51 52 Vin 54 55 Voltage, Current, etc. ...

Motor control example: BLDC (Brushless DC) Motor

Thank you for your attention!

